برآورد دمای خاک از داده‌های هواشناسی با استفاده از مدل‌های یادگیری ماشین سریع، شبکه عصبی مصنوعی و رگرسیون خطی چندگانه

Authors

  • احمد فرخیان فیروزی دانشیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران
  • حسین زادمهر علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز ، ایران
Abstract:

دمای خاک عامل کلیدی است که فرآیندها و خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک را کنترل می­کند؛ لذا بر کمیت و کیفیت تولید محصولات کشاورزی تأثیر می­گذارد. هدف از انجام این پژوهش برآورد دمای خاک با استفاده از پارامترهای هواشناسی به روش­های مختلف ماشین یادگیری بوده است. بدین منظور داده‌های هواشناسی و دمای خاک در عمق‌های 5، 10، 20، 30، 50 و 100 سانتی‌متری از 17 ایستگاه‌ سینوپتیک استان خوزستان مربوط به 25 سال (1994 تا 2018) گردآوری شد. مدل‌های شبکه عصبی پرسپترون چندلایه (MLPNN)، ماشین یادگیری سریع (ELM) و رگرسیون خطی چندگانه (MLR) برای برآورد دمای خاک استفاده شدند. داده‌های دمای هوا، سرعت باد، رطوبت نسبی هوا، فشار بخار، تبخیر و بارندگی به­عنوان ورودی برای آموزش مدل­ها استفاده شدند. نتایج نشان داد که تمام مدل­ها برآوردی بهتری از دمای لایه سطحی خاک (عمق 30-0 سانتی­متری) داشته و با افزایش عمق دقت­آن­ها کاهش می­یابد، به­طوری­که بهترین دقت برآورد دمای خاک مربوط به عمق 5 و کمترین آن مربوط به عمق 100 سانتی‌متری بود. نتایج نشان داد مدل­های MLR، MLPNN و ELM عملکردی مطلوب در مدل­سازی دمای خاک در تمام عمق­ها داشتند. برای مدل­های MLR، MLPNN، ELM به ترتیب مقادیر R2 از 864/0-700/0، 997/0-967/0 و 996/0-967/0، مقادیر RMSE از 823/2-557/2، 072/0-034/0 و 078/0-028/0 درجه سلسیوس و مقادیر MAE از 529/1-398/1، 063/0-023/0 و 065/0-023/0 درجه سلسیوس بود. نتایج نشان داد که دو مدل MLPNN و ELM دارای عملکردی تقریبا مشابه و بهتر از مدل رگرسیون خطی چندگانه بودند؛ اما به دلیل سرعت محاسبات بسیار بالای مدل ELM، پیشنهاد می­گردد از مدل MLPNN برای تخمین دمای نیمرخ خاک استفاده شود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

مدل‌سازی عرض عملیات خاکی جاده های جنگلی با استفاده از شبکه عصبی مصنوعی و رگرسیون خطی چندگانه

عرض عملیات خاکی، به ­عنوان یکی از مهم‌ ترین پارامترهای تعیین‌ کننده حجم خاکبرداری و خاکریزی، در هزینه و تخریب ناشی از عملیات جاده‌ سازی در جنگل مؤثر است. هدف از این پژوهش بررسی امکان پیش‌ بینی عرض عملیات خاکی جاده‌ های جنگلی است. برای نیل به این هدف دو روش شبکه عصبی مصنوعی و رگرسیون خطی چندگانه بکار گرفته شده است. برای این منظور، 192 مقطع عرضی در جاده­های جنگلی سوردار-واتاشان مورد بررسی قرار گر...

full text

مدل‌سازی شاخص وضعیت روسازی (PCI) با استفاده از رگرسیون خطی چندگانه و شبکه عصبی انتشار برگشتی

یکیازمهمتریناهدافیکسیستممدیریتروسازی،تعییناولویت‌هاوزمانبهینهبرایتعمیرات،از طریقپیش‌بینیوضعیتروسازیاست.درواقعهدفسیستممدیریتروسازی(PMS)،<...

full text

تخمین مدول الاستیسیته سنگ بکر با استفاده از شبکه عصبی مصنوعی و رگرسیون غیر خطی

مدول الاستیسیته سنگ بکر یکی از ملزومات اساسی بسیاری از مطالعات ژئومکانیکی و به ویژه پروژه های حفاری سنگ می باشد. برای تعیین مستقیم مدول الاستیسیته نمونه مغزه‌های باکیفیت بالا و هندسه مناسب مورد نیاز بوده و تهیه نمونه‌های مناسب از سنگ‌های شکسته و هوازده برای این منظور به آسانی امکان­پذیر نیست. بنابراین مدل‌های پیش­بینی مدول الاستیسیته براساس خصوصیات شاخص سنگ بکر ارائه گردیده­اند. در این مطالعه ب...

full text

پیش‌بینی اسلامپ بتن با استفاده از مدل شبکه عصبی مصنوعی و روش رگرسیون چندمتغیره خطی

روش‌های مختلفی جهت اندازه‌گیری کارایی بتن وجود دارد که یکی از متداول‌ترین و معمول‌ترین روش‌ها، آزمایش اسلامپ است. جهت دست‌یابی به مخلوط‌های بتنی با اسلامپ مورد نظر، باید مخلوط‌های مختلف بتنی ساخته شود و آزمایش اسلامپ بر روی آن‌ها صورت گیرد. جهت صرفه‌جویی در زمان، هزینه و مصالح بهتر است از روش‌های هوشمندی جهت پیش‌بینی اسلامپ بتن بر اساس نتایج مربوط به تعداد معینی از مخلوط‌های بتنی استفاده شود. د...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 51  issue 4

pages  895- 906

publication date 2020-06-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023